LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Anti-Inflammatory Effects of Camellia fascicularis Polyphenols via Attenuation of NF-κB and MAPK Pathways in LPS-Induced THP-1 Macrophages

Photo by mak_jp from unsplash

Purpose Plant polyphenols possess beneficial functions against various diseases. This study aimed to identify phenolic ingredients in Camellia fascicularis (C. fascicularis) and investigate its possible underlying anti-inflammatory mechanism in lipopolysaccharide… Click to show full abstract

Purpose Plant polyphenols possess beneficial functions against various diseases. This study aimed to identify phenolic ingredients in Camellia fascicularis (C. fascicularis) and investigate its possible underlying anti-inflammatory mechanism in lipopolysaccharide (LPS)-induced human monocytes (THP-1) macrophages. Methods C. fascicularis polyphenols (CFP) were characterized by ultra-performance liquid chromatography (UPLC) combined with quadrupole-time-of-flight mass/mass spectrometry (Q-TOF-MS/MS). The THP-1 cells were differentiated into macrophages under the stimulation of phorbol 12-myristate 13-acetate (PMA) and then treated with LPS to build a cellular inflammation model. The cell viability was detected by CCK-8 assay. The levels of reactive oxygen species (ROS) were assessed by flow cytometry. The secretion and expression of inflammatory cytokines were tested by enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-PCR). In addition, the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were analyzed by Western blotting. Results Twelve phenolic constituents including (–)-epicatechin, casuariin, agastachoside, etc. in CFP were identified. The CCK-8 assay showed that CFP exhibited no significant cytotoxicity between 100 and 300 μg/mL. After treated with CFP, the release of ROS was significantly suppressed. CFP inhibited inflammation in macrophages by attenuating the polarization of LPS-induced THP-1 macrophages, down-regulating the expression of the pro-inflammatory cytokines IL-6, IL-1β and TNF-α, and up-regulating the expression of the anti-inflammatory cytokine IL-10. Western blotting experiments manifested that CFP could markedly inhibit the phosphorylation of p65, ERK and JNK, thereby suppressing the activation of NF-κB and MAPK signaling pathways. Conclusion These findings indicated that CFP exerted anti-inflammatory activity by inhibiting the activation NF-κB and MAPK pathways which may induce the secretion of pro-inflammatory cytokines. This study offers a reference for C. fascicularis as the source of developing natural, safe anti-inflammatory agents in the future.

Keywords: camellia fascicularis; thp macrophages; anti inflammatory; lps induced; mapk

Journal Title: Journal of Inflammation Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.