LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inhibition of miRNA-1-Mediated Inflammation and Autophagy by Astragaloside IV Improves Lipopolysaccharide-Induced Cardiac Dysfunction in Rats

Photo from wikipedia

Introduction Astragaloside IV (AS-IV) is one of the main active components isolated from the traditional Chinese medicinal herb, Astragalus membranaceus. The present study was designed to investigate whether the regulation… Click to show full abstract

Introduction Astragaloside IV (AS-IV) is one of the main active components isolated from the traditional Chinese medicinal herb, Astragalus membranaceus. The present study was designed to investigate whether the regulation of microRNA-1 (miR-1)-mediated inflammation and autophagy contributes to the protective effect of AS-IV against cardiac dysfunction in rats treated with lipopolysaccharides (LPS). Methods Animal model of cardiac dysfunction in rats or cellular model of injured H9c2 heart cell line was established by using LPS. Echocardiography, electron microscopy, enzyme-linked immunosorbent assay, immunofluorescence, quantitative RT-PCR, and Western blotting were used to determine the cardiac function and expression of inflammation- and autophagy-related proteins at both the mRNA and protein levels. Results LPS caused cardiac dysfunction in rats or injury in H9c2 cells and induced inflammation and autophagy. Compared with LPS treatment, AS-IV treatment attenuated cardiac dysfunction or cell injury, accompanied by inhibition of inflammation and autophagy. However, the miR-1 mimics partly abolished the effects of AS-IV. In addition, the effect of the miR-1 inhibitor was similar to that of AS-IV in the LPS model. Further analyses showed that AS-IV treatment decreased the mRNA expression of miR-1 in the heart tissue of rats and H9c2 cells treated with LPS. Conclusion These results suggest that AS-IV attenuated cardiac dysfunction caused by LPS by inhibiting miR-1-mediated inflammation and autophagy, thereby providing a novel mechanism for the protection against cardiac diseases.

Keywords: dysfunction rats; cardiac dysfunction; inflammation; inflammation autophagy

Journal Title: Journal of Inflammation Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.