Biodiesel synthesis from soybean oil using methanol and alkaline catalysts occurs in the following two consecutive steps: dispersion of methanol in the oil and methanolysis. The effect of the alkaline… Click to show full abstract
Biodiesel synthesis from soybean oil using methanol and alkaline catalysts occurs in the following two consecutive steps: dispersion of methanol in the oil and methanolysis. The effect of the alkaline catalysts NaOCH3, KOCH3, NaOH, and KOH in the dispersion step at 30-60 °C and under mechanical stirring at 400 rpm was evaluated. The dispersion step accounts for 44.6-73.3% of the total synthesis time and was poorly favored compared to methanolysis due to the increase in temperature. The catalysts decreased the dispersion time, although most of them increased the methanol-oil interfacial tension. K-containing catalysts were more active than their Na analogues due to higher adsorption of K in the methanol-oil interface and the higher production of methyl esters (which act as emulsifying agents), which promote a more favorable interfacial tension. The alkaline cation effect was more significant in the dispersion step than in the methanolysis step.
               
Click one of the above tabs to view related content.