LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Supramolecular Approach in Energy Conversion Devices

Photo from wikipedia

This review summarizes investigations carried out at the Laboratory of Photochemistry and Energy Conversion (LFCE) in the University of São Paulo dealing with design and characterization of ruthenium(II), rhenium(I) and… Click to show full abstract

This review summarizes investigations carried out at the Laboratory of Photochemistry and Energy Conversion (LFCE) in the University of São Paulo dealing with design and characterization of ruthenium(II), rhenium(I) and iridium(III) polypyridine complexes with desired photochemical and photophysical properties in light of the development of optoelectronics and photoinduced energy conversion systems. First, the breakthroughs on molecular engineering of emissive Re, Ru and Ir complexes for the development of highly efficient light-emitting devices, such as organic light-emitting diodes (OLEDs) and light-emitting electrochemical cells (LECs), are presented. Then, the photochemical and photophysical properties of fac-[Re(CO)3(NN)(trans-L)] complexes (NN = bidentate polypyridyl ligands and trans-L = stilbene-like ligand), which find use in molecular machines and photosensors, are discussed. Finally, dye-sensitized energy conversion devices based on Ru complexes and natural dyes, such as dye-sensitized solar cells (DSCs) and dye-sensitized photoelectrosynthesis cells (DSPECs), are reviewed, highlighting some strategies for photoanode engineering aiming at improved device efficiencies.

Keywords: energy; dye sensitized; energy conversion; light emitting; conversion devices

Journal Title: Journal of the Brazilian Chemical Society
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.