LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental and numerical studies on the design of a sonic crystal window

Photo from archive.org

Four sets of numerical models were created to study the effects of shapes, staggering patterns, Helmholtz resonators and array configurations on the acoustical performance of sonic crystals (SCs) in order… Click to show full abstract

Four sets of numerical models were created to study the effects of shapes, staggering patterns, Helmholtz resonators and array configurations on the acoustical performance of sonic crystals (SCs) in order to design an efficient SC window to mitigate the traffic noise level at a room in a student hostel of NUS. Rectangular SCs consistently obtained highest transmission loss for frequencies ranging from 300 Hz to 3000 Hz compared to diamond and semi-circle SCs. Fully staggered pattern performed better than non-staggered and 50 % staggered patterns for frequencies below 1700 Hz. Helmholtz resonators were useful for enhancing low frequency noise mitigation. The prototype of the final designed SC window was fabricated and tested in order to validate the simulation result. Generally, numerical and experimental results were in similar trends. Maximum transmission loss of the SC window was found to be occurred at 900 Hz which was about 18 dB.

Keywords: window; studies design; numerical studies; experimental numerical; sonic crystal; design sonic

Journal Title: Journal of Vibroengineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.