LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Research on dynamic characteristics of spiral basilar membrane after replacing artificial auditory ossicle based on the reconstructed human ear model

Photo from wikipedia

In this paper, PATRAN software was used to establish a complete 3D finite element model of human ears, and it was then combined with NASTRAN software to analyze frequency responses.… Click to show full abstract

In this paper, PATRAN software was used to establish a complete 3D finite element model of human ears, and it was then combined with NASTRAN software to analyze frequency responses. This paper conducted a detailed analysis on the dynamic parameters including umbo and stapes displacements of normal human ears under sound pressures 90 dB and 105 dB. The numerically computational results were compared with experimental data. When the analyzed frequency was less than 1000 Hz, the computational result of numerical simulation was well consistent with the upper limit. When the analyzed frequency was more than 1000 Hz, the computational result of numerical simulation was well consistent with the lower limit. Therefore, the numerically computational model was reliable. In addition, based on the verified model, this paper studied vibration characteristics of spiral basilar membrane after replacing artificial auditory ossicle based on the whole hearing system, and found that vibration characteristics of spiral basilar membrane had an obvious change at low and high frequencies after replacing artificial auditory ossicle TORP. Using finite element method to analyze vibration characteristics of spiral basilar membrane can well predict the hearing recovery effect after replacing artificial auditory ossicle. Compared with normal ears, the vibration level of spiral basilar membrane after replacing artificial auditory ossicle has slowed down in 100 Hz-600 Hz, 2000 Hz-4000 Hz and 7000 Hz-10000 Hz, and has been strengthened in 600 Hz-2000 Hz and 4000 Hz-7000 Hz, which provided some help for the hearing recovery at the high-frequency band.

Keywords: artificial auditory; basilar membrane; replacing artificial; spiral basilar; auditory ossicle

Journal Title: Journal of Vibroengineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.