LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigations of hydraulic transient flows in pressurized pipeline based on 1D traditional and 3D weakly compressible models

Photo by ajonesyyyyy from unsplash

Transient flow characteristics and dissipation mechanism in pressurized pipeline were investigated based on 1D friction models and 3D turbulence models, where the pressure–density model was combined into the 3D continuity… Click to show full abstract

Transient flow characteristics and dissipation mechanism in pressurized pipeline were investigated based on 1D friction models and 3D turbulence models, where the pressure–density model was combined into the 3D continuity equation allowing for the elasticity of the fluid and the pipes. The applicability of 3D realizable k–ε and 3D SST (shear stress transport) k–ω turbulence models was verified with comparison to 1D traditional water hammer models and the experimental data for fast closing of the valve in the reservoir–pipe–valve system. The valve closure rule was instantaneously carried out using the grid slip CFD (computational fluid dynamics) technique. The SST k–ω turbulence model has the highest accuracy in predicting the pressure attenuation of transient flows. The 3D detailed flow field confirms that the asymmetric flows induced by the change of valve opening within approximately three-fourths of the pipe inner diameter before the valve are captured. In the pressure wave cycles, the unsteady inertia, axial pressure gradient, viscous shear stress and turbulent shear stress mainly influence the velocity variations. During the pressure wave propagation, the viscous and turbulent dissipation are critical in the pressure attenuation in the wall region; the viscous dissipation is mainly concentrated in the viscous sublayer, while the turbulent dissipation increases to the maximum values at yþ1⁄4 13–23.

Keywords: transient; pressurized pipeline; dissipation; transient flows; pressure

Journal Title: Journal of Hydroinformatics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.