The MI, Chromocult® coliform, and Compass CC chromogenic culture-based methods used to assess water quality by the detection of Escherichia coli and total coliforms were compared in terms of their… Click to show full abstract
The MI, Chromocult® coliform, and Compass CC chromogenic culture-based methods used to assess water quality by the detection of Escherichia coli and total coliforms were compared in terms of their specificity and sensitivity, using 16S rRNA sequencing for colony identification. A sewage water sample was divided in 2-μL subsamples for testing by all three culture-based methods. All growing colonies were harvested and subjected to 16S rRNA sequencing. Test results showed that all E. coli colonies were correctly identified by all three methods, for a specificity and a sensitivity of 100%. However, for the total coliform detection, the MI agar, Chromocult® coliform agar, and Compass CC agar were specific for only 69.2% (9/13), 47.2% (25/53), and 40.5% (17/42), whereas sensitive for 97.8% (45/46), 97.5% (39/40), and 85.7% (24/28), respectively. Thus, given the low level of specificity of these methods for the detection of total coliforms, confirming the identity of total coliform colonies could help to take public health decisions, in particular for cities connected to a public drinking water distribution system since the growth of few putative total coliform colonies on chromogenic agar is problematic and can lead to unnecessary and costly boiling notices from public health authorities.
               
Click one of the above tabs to view related content.