LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Degradation of rhodamine B with manganese dioxide nanorods.

Photo by connormisset from unsplash

This is an investigation on oxidative degradation of rhodamine B (RhB) by manganese dioxide (MnO2) nanorods synthesized by redox co-precipitation method. Field emission scanning electron microscopy of MnO2 nanorods at… Click to show full abstract

This is an investigation on oxidative degradation of rhodamine B (RhB) by manganese dioxide (MnO2) nanorods synthesized by redox co-precipitation method. Field emission scanning electron microscopy of MnO2 nanorods at an electron voltage of 10 kV revealed a rod-like morphology for the synthesized nanoparticles. Fourier transform infrared spectra exhibited characteristic peaks of MnO2. Surface area of MnO2 nanorods was 277 m2/g. Effect of various parameters like initial concentration and pH of RhB solution, time of contact between MnO2 nanorods and RhB, dosage of MnO2, and stirring speed on decolouration of RhB was evaluated in batch experiments. Rapid decolouration in the initial period of the reaction was observed due to the adsorption of RhB molecules onto the surface of MnO2 nanorods followed by oxidative degradation. Percentage decolouration decreased with increase in initial concentration and increased with increase in dosage, speed of stirring the mixture and with increase in pH up to pH 7. Near complete decolouration was achieved at a dose of 0.5 g/L of MnO2 nanorods from 20 mg/L RhB solution within 3 min. Observations fitted best to the pseudo second order kinetic model. This study could pave the way for development of cost-effective, nontoxic nanostructures for treatment of wastewaters containing RhB.

Keywords: mno2; degradation rhodamine; mno2 nanorods; manganese dioxide

Journal Title: Journal of water and health
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.