This study develops novel dose-response models for Naegleria fowleri from selected peer-reviewed experiments on the virulence based on the intranasal exposure pathway. One data set measured the response of mice… Click to show full abstract
This study develops novel dose-response models for Naegleria fowleri from selected peer-reviewed experiments on the virulence based on the intranasal exposure pathway. One data set measured the response of mice intranasally inoculated with the amebae and the other study addressed the response of mice swimming in N. fowleri infected water. The measured response for both studies was death. All experimental data were best fit by the beta-Poisson dose-response model. The three swimming experiments could be pooled, and this is the final recommended model with an LD50 of 13,257 amebae. The results of this study provide a better estimate of the probability of the risk to N. fowleri exposure than the previous models developed based on an intravenous exposure. An accurate dose-response model is the first step in quantifying the risk of free-living amebae like N. fowleri, which pose risks in recreational environments and have been detected in drinking water and premise plumbing systems. A better understanding of this risk will allow for risk management that limits the ability for pathogen growth, proliferation, and exposure.
               
Click one of the above tabs to view related content.