LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental study of geotechnical characteristics of crushed glass mixed with Kaolinite soil

Photo from wikipedia

The Geotechnical properties of adding crushed curbside-collected glass to Kaolinite S300 with various percentages of 10 to 50% were experimentally evaluated. Crushed glass passing the 2.36 mm (#8) sieve, and… Click to show full abstract

The Geotechnical properties of adding crushed curbside-collected glass to Kaolinite S300 with various percentages of 10 to 50% were experimentally evaluated. Crushed glass passing the 2.36 mm (#8) sieve, and retaining on 1.18 mm (#16) selected for this study is collected from a different area in Johor Bahru, Malaysia. Measured hydraulic conductivities were on the order of 2.33E-6 and 1.87E-5 for 10% and 50% respectively. The result shows increment in the maximum dry density from 1.615mg/m3 at 10% to 1.908mg/m3 at 50% of addition of crushed glass with the optimum moisture content of 18.35% and 7.4% respectively. Friction angles from the direct shear test were evaluated between 12 to 25 degrees at normal stresses of 56.4 to 219.9 kPa. The result shows that the unconfined compression strength of Kaolinite S300 mixed with crushed glass is increased from 5.26 kPa at 10% addition of crushed glass up to 17.52 kPa at 50%. It can be concluded that the crushed glass is environmentally clean, readily available, and relatively low-cost material that can be one of the replacements for traditional aggregate to enhance the geotechnical properties of soft cohesive soils.

Keywords: crushed glass; experimental study; glass; study geotechnical; geotechnical characteristics

Journal Title: International Journal of Geomate
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.