Protein aggregation into β-sheet-enriched insoluble assemblies is being found to be associated with an increasing number of debilitating human pathologies, such as Alzheimer's disease or type 2 diabetes, but also… Click to show full abstract
Protein aggregation into β-sheet-enriched insoluble assemblies is being found to be associated with an increasing number of debilitating human pathologies, such as Alzheimer's disease or type 2 diabetes, but also with premature aging. Furthermore, protein aggregation represents a major bottleneck in the production and marketing of protein-based therapeutics. A myriad of in vitro and in vivo aggregation studies have shown that the aggregation propensity of a certain polypeptide sequence is highly dependent on its intrinsic properties and, in most cases, driven by specific short regions of high aggregation propensity. These observations have fostered the development of a first generation of algorithms aimed to predict protein aggregation propensities forom the protein sequence. A second generation of programs able to map protein aggregation on protein structures is emerging. In the present review, we describe representative biocomputational approaches to evaluate the aggregation properties of protein sequences and structures, while illustrating how they can become very useful tools to target protein aggregation in biomedicine and biotechnology.
               
Click one of the above tabs to view related content.