Specific peptide molecules classified as hormones, neuropeptides and cytokines are involved in intercellular signaling regulating various physiological processes in all organs and tissues. This justifies the peptidergic signaling as an… Click to show full abstract
Specific peptide molecules classified as hormones, neuropeptides and cytokines are involved in intercellular signaling regulating various physiological processes in all organs and tissues. This justifies the peptidergic signaling as an attractive pharmacological target. Recently, a protein mimetic of a peptide hormone has been identified in Escherichia coli suggesting the potential use of specific bacterial proteins as a new type of peptide-like drugs. We review the scientific rational and technological approaches leading to the identification of the E. coli caseinolytic protease B (ClpB) homologue protein as a conformational mimetic of α-melanocyte-stimulating hormone (α-MSH), a melanocortin peptide critically involved in the regulation of energy homeostasis in humans and animals. Theoretical and experimental backgrounds for the validation of bacterial ClpB as a potential drug are discussed based on the known E. coli ClpB amino acid sequence homology with α-MSH. Using in silico analysis, we show that other protein sources containing similar to E. coli ClpB α-MSH-like epitopes with potential biological activity may exist in Enterobacteriaceae and in some Brassicaceae. Thus, the original approach leading to the identification of E. coli ClpB as an α-MSH mimetic protein can be applied for the identification of mimetic proteins of other peptide hormones and development of a new type of peptide-like protein-based drugs.
               
Click one of the above tabs to view related content.