BACKGROUND Currently, it has been recognized that High-Density Lipoproteins (HDL) functionality plays a much more essential role in protection from atherosclerosis than circulating HDL-cholesterol (HDL-C) levels per se. Cholesterol efflux… Click to show full abstract
BACKGROUND Currently, it has been recognized that High-Density Lipoproteins (HDL) functionality plays a much more essential role in protection from atherosclerosis than circulating HDL-cholesterol (HDL-C) levels per se. Cholesterol efflux from macrophages to HDL, cholesterol efflux capacity (CEC) has been shown to be a key metric of HDL functionality. Thus, quantitative assessment of CEC may be an important tool for the evaluation of HDL functionality, as improvement of HDL function may lead to a reduction of the risk for Cardiovascular disease (CVD). INTRODUCTION Although the cardioprotective action of HDLs is exerted mainly through their involvement in the reverse cholesterol transport (RCT) pathway, HDLs also have important anti-inflammatory, antioxidant, antiaggregatory and anticoagulant properties that contribute to their favorable cardiovascular effects. Certain genetic, pathophysiologic, disease states and environmental conditions may influence the cardioprotective effects of HDL either by inducing modifications in lipidome and/or protein composition or in the enzymes responsible for HDL metabolism. On the other hand, certain healthy habits or pharmacologic interventions may actually favorably affect HDL functionality. METHOD The present review discusses the effects of environmental factors, including obesity, smoking, alcohol consumption, dietary habits, various pharmacologic interventions, as well as aerobic exercise, on HDL functionality. RESULT Experimental and clinical studies or pharmacological interventions support the impact of these environmental factors in the modification of HDL functionality, although the mechanisms that are mediated are poorly understood. CONCLUSION Further research should be conducted to unreal the underlying mechanisms of these environmental factors and to identify new pharmacologic interventions, capable of enhancing CEC, improving HDL functionality and potentially improving cardiovascular risk.
               
Click one of the above tabs to view related content.