LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recent Advances in the Development of Triose Phosphate Isomerase Inhibitors as Antiprotozoal Agents.

Photo by beirutefilm from unsplash

BACKGROUND Parasitic diseases caused by protozoa such as Chagas disease, leishmaniasis, malaria, African trypanosomiasis, amebiasis, trichomoniasis, and giardiasis are considered serious public health problems in developing countries. Drug-resistance among parasites… Click to show full abstract

BACKGROUND Parasitic diseases caused by protozoa such as Chagas disease, leishmaniasis, malaria, African trypanosomiasis, amebiasis, trichomoniasis, and giardiasis are considered serious public health problems in developing countries. Drug-resistance among parasites justifies the search for new therapeutic drugs and the identification of new targets becomes a valuable approach. In this scenario, glycolysis pathway which consists of the conversion of glucose into pyruvate plays an important role in the protozoa energy supply and it is therefore considered as a promising target. In this pathway, triose phosphate isomerase (TIM) plays an essential role in efficient energy production. Furthermore, protozoa TIM show structural differences with human enzyme counterparts suggesting the possibility of obtaining selective inhibitors. Therefore, TIM is considered a valid approach to develop new antiprotozoal agents, inhibiting the glycolysis in the parasite. OBJECTIVE In this review, we discuss the drug design strategies, structure-activity relationship, and binding modes of outstanding TIM inhibitors against Trypanosoma cruzi, Trypanosoma brucei, Plasmodium falciparum, Giardia lamblia, Leishmania mexicana, Trichomonas vaginalis, and Entamoeba histolytica. RESULTS TIM inhibitors showed mainly aromatic systems and symmetrical structure, where the size and type of heteroatom are important for enzyme inhibition. This inhibition is mainly based on the interaction with i) the interfacial region of TIM inducing changes on the quaternary and tertiary structure or ii) with the TIM catalytic region were the main pathways that disabled the catalytic activity of the enzyme. CONCLUSION Benzothiazole, benzoxazole, benzimidazole, and sulfhydryl derivatives stand out as TIM inhibitors. In silico and in vitro studies demonstrate that the inhibitors bind mainly at the TIM dimer interface. In this review, the development of new TIM inhibitors as antiprotozoal drugs is demonstrated as an important pharmaceutical strategy that may lead to new therapies for these ancient parasitic diseases.

Keywords: triose phosphate; antiprotozoal agents; inhibitors antiprotozoal; tim; phosphate isomerase; tim inhibitors

Journal Title: Current medicinal chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.