LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multicomponent reactions in the synthesis of antiviral compounds.

Photo by bermixstudio from unsplash

BACKGROUND Multicomponent reactions are one-pot processes for the synthesis of highly functionalized hetero-cyclic and hetero-acyclic compounds, often endowed with biological activity. OBJECTIVE Multicomponent reactions are considered green processes with high… Click to show full abstract

BACKGROUND Multicomponent reactions are one-pot processes for the synthesis of highly functionalized hetero-cyclic and hetero-acyclic compounds, often endowed with biological activity. OBJECTIVE Multicomponent reactions are considered green processes with high atom economy. In addition, they present advantages compared to the classic synthetic methods such as high efficiency and low wastes production. METHOD In these reactions two or more reagents are combined together in the same flask to yield a product containing almost all the atoms of the starting materials. RESULTS The scope of this review is to present an overview of the application of multicomponent reactions in the synthesis of compounds endowed with antiviral activity. The syntheses are classified depending on the viral target. CONCLUSION Multicomponent reactions can be applied to all the stages of the drug discovery and development process making them very useful in the search for new agents active against emerging (viral) pathogens.

Keywords: multicomponent reactions; reactions synthesis; chemistry; antiviral compounds; synthesis antiviral

Journal Title: Current medicinal chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.