BACKGROUND Biomarkers are characteristic molecules that can be measured as indicators of biological process status or condition, exhibiting special relevance in Parkinson's Disease (PD). This disease is a chronic neurodegenerative… Click to show full abstract
BACKGROUND Biomarkers are characteristic molecules that can be measured as indicators of biological process status or condition, exhibiting special relevance in Parkinson's Disease (PD). This disease is a chronic neurodegenerative disorder very difficult to study given the site of pathology and due to a clinical phenotype that fluctuates over time. Currently there is no definitive diagnostic test, thus clinicians hope that the detection of crucial biomarkers will help to the symptomatic and presymptomatic diagnostics and providing surrogate endpoints to demonstrate the clinical efficacy of new treatments. METHODS Electrochemical aptasensors are excellent analytical tools that are used in the detection of PD biomarkers, as they are portable, easy to use, and perform real-time analysis. RESULTS In this review, we discuss the most important clinical biomarkers for PD, highlighting their physiological role and function in the disease. Herein, we review for the first time innovative aptasensors for the detection of current potential PD biomarkers based on electrochemical techniques and discuss future alternatives, including ideal analytical platforms for point-of-care diagnostics. CONCLUSION These new tools will be critical not only in the discovery of sensitive, specific, and reliable biomarkers of preclinical PD, but also in the development of tests that can assist in the early detection and differential diagnosis of parkinsonian disorders and in monitoring disease progression. Various methods for fixing aptamers onto the sensor surfaces, enabling quantitative and specific PD biomarker detection present in synthetic and clinical samples, will also be discussed.
               
Click one of the above tabs to view related content.