LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Role of Autophagy and Death Pathways in Dose-dependent Isoproterenol-induced Cardiotoxicity

Photo by sharegrid from unsplash

Background: Isoproterenol (ISO) is a non-selective β-adrenergic agonist. Our aims were to investigate the autophagy and cell death pathways including apoptosis and necrosis in ISO-induced car-diac injury in a dose-dependent… Click to show full abstract

Background: Isoproterenol (ISO) is a non-selective β-adrenergic agonist. Our aims were to investigate the autophagy and cell death pathways including apoptosis and necrosis in ISO-induced car-diac injury in a dose-dependent manner. Methods: Male Sprague-Dawley rats were treated for 24 hours with I. vehicle (saline); II. 0.005 mg/kg ISO; III. 0.05 mg/kg ISO; IV. 0.5 mg/kg ISO; V. 5 mg/kg ISO; VI. 50 mg/kg ISO, respectively. Hearts were isolated and infarct size was measured. Serum levels of Troponin T (TrT), lactate dehydrogenase (LDH), creatine kinase iso-enzyme MB (CK-MB) were measured. TUNEL assay was carried out to monitor apoptotic cell death and Western blot was performed to evaluate the level of autophagic and apoptotic markers. Results: Survival rate of animals was dose-dependently decreased by ISO. Serum markers and infarct size revealed the development of cardiac toxicity. Level of Caspase-3, and results of TUNEL assay, demonstrated that the level of apoptosis was dose-dependently increased. They reached the highest level in ISO 5 and it decreased slightly in ISO 50 group. Focusing on autophagic proteins, we found that level of Beclin-1 was increased in a dose-dependent manner, but significantly increased in ISO 50 treated group. Level of LC3B-II and p62 showed the same manner, but the elevated level of p62 indicated that autophagy was impaired in both ISO 5 and ISO 50 groups. Conclusion: Taken together these results suggest that at smaller dose of ISO autophagy may cope with the toxic effect of ISO; however, at higher dose apoptosis is initiated and at the highest dose substantial necrosis occurs.

Keywords: iso iso; isoproterenol; iso; dose dependent; death pathways

Journal Title: Current Pharmaceutical Design
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.