LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Luliconazole topical dermal drug delivery for superficial fungal infections: Penetration hurdles and role of functional nanomaterials.

Photo from wikipedia

Luliconazole is the first and only anti-fungal agent approved for the short-term treatment of superficial fungal infections. However, commercially available conventional topical dermal drug delivery cargo of luliconazole is associated… Click to show full abstract

Luliconazole is the first and only anti-fungal agent approved for the short-term treatment of superficial fungal infections. However, commercially available conventional topical dermal drug delivery cargo of luliconazole is associated with certain limitations like lower skin permeation and shorter skin retention of drug. Therefore, present review is an attempt to decode the penetration hurdles in luliconazole topical dermal drug delivery. Moreover, we also summarized the activity of functional nanomaterials based drug delivery systems employed by the scientific fraternity to improve luliconazole efficacy in superficial fungal infections on case-to-case basis. In addition, efforts have also been made to unbox the critically acclaimed mechanism of action of luliconazole against fungal cells. Under the framework of future prospects, we have analyzed the combination of luliconazole with isoquercetin using in-silico docking technique for offering synergistic antifungal activity. Isoquercetin exhibited a good affinity for superoxide dismutase (SOD), a fungal target owing to the formation of hydrogen bond with Glu132, Glu133, and Arg143, in addition to few hydrophobic interactions. On the other hand, luliconazole inhibited lanosterol-14α-demethylase and consequently blocked ergosterol. In addition, nanotechnology and artificial neural network (ANN) derived integrated drug delivery systems may also be explored for augmenting the luliconazole therapeutic efficacy in topical fungal infections. Synergy of ANN models along with topical nanoscaled drug delivery may help to achieve critical quality attributes (CQA) to gain commercial success.

Keywords: superficial fungal; topical dermal; drug delivery; fungal infections; drug

Journal Title: Current pharmaceutical design
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.