LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Ultrahigh-Dimensional Mapping Model of High-order Epistatic Networks for Complex Traits

Photo by thinkmagically from unsplash

Background: Genetic interactions involving more than two loci have been thought to affect quantitatively inherited traits and diseases more pervasively than previously appreciated. However, the detection of such high-order interactions… Click to show full abstract

Background: Genetic interactions involving more than two loci have been thought to affect quantitatively inherited traits and diseases more pervasively than previously appreciated. However, the detection of such high-order interactions to chart a complete portrait of genetic architecture has not been well explored. Methods: We present an ultrahigh-dimensional model to systematically characterize genetic main effects and interaction effects of various orders among all possible markers in a genetic mapping or association study. The model was built on the extension of a variable selection procedure, called iFORM, derived from forward selection. The model shows its unique power to estimate the magnitudes and signs of high-order epistatic effects, in addition to those of main effects and pairwise epistatic effects. Results: The statistical properties of the model were tested and validated through simulation studies. By analyzing a real data for shoot growth in a mapping population of woody plant, mei (Prunus mume), we demonstrated the usefulness and utility of the model in practical genetic studies. The model has identified important high-order interactions that contribute to shoot growth for mei. Conclusion: The model provides a tool to precisely construct genotype-phenotype maps for quantitative traits by identifying any possible high-order epistasis which is often ignored in the current genetic literature.

Keywords: mapping; order epistatic; model; high order; ultrahigh dimensional

Journal Title: Current Genomics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.