LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

iMethylK_pseAAC: Improving Accuracy of Lysine Methylation Sites Identification by Incorporating Statistical Moments and Position Relative Features into General PseAAC via Chou’s 5-steps Rule

Background: Methylation is one of the most important post-translational modifications in the human body which usually arises on lysine among the most intensely modified residues. It performs a dynamic role… Click to show full abstract

Background: Methylation is one of the most important post-translational modifications in the human body which usually arises on lysine among the most intensely modified residues. It performs a dynamic role in numerous biological procedures, such as regulation of gene expression, regulation of protein function and RNA processing. Therefore, to identify lysine methylation sites is an important challenge as some experimental procedures are time-consuming. Objective: Herein, we propose a computational predictor named iMethylK_pseAAC to identify lysine methylation sites. Methods: Firstly, we constructed feature vectors based on PseAAC using position and composition rel-ative features and statistical moments. A neural network is trained based on the extracted features. The performance of the proposed method is then validated using cross-validation and jackknife testing. Results: The objective evaluation of the predictor showed accuracy of 96.7% for self-consistency, 91.61% for 10-fold cross-validation and 93.42% for jackknife testing. Conclusion: It is concluded that iMethylK_pseAAC outperforms the counterparts to identify lysine methylation sites such as iMethyl_pseACC, BPB_pPMS and PMeS.

Keywords: methylation sites; methylation; lysine methylation; pseaac; statistical moments; imethylk pseaac

Journal Title: Current Genomics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.