LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Combinational Approach for More Efficient miRNA Biosensing

Photo by sickhews from unsplash

MicroRNAs, short single-stranded noncoding RNAs ranging in length from 18 ~ 24 bp, are found in all kingdoms of eukaryotes and even viruses. It was found that miRNAs are involved… Click to show full abstract

MicroRNAs, short single-stranded noncoding RNAs ranging in length from 18 ~ 24 bp, are found in all kingdoms of eukaryotes and even viruses. It was found that miRNAs are involved in a variety of biological processes, and their intracellular aberrant expression is related to diseases and abnormalities in the immune system. Since then, it has been considered essential to develop an efficient miRNA detection system. In this review, the limitations of traditional scheme-based miRNA detection methods are compared and analyzed. In particular, nucleic acid amplification-based miRNA detection methods and nanomaterial-based miRNA detection methods, which are widely used as a biosensing platform because of various features and advantages, such as high sensitivity, specificity, and simplicity, are analyzed. Based on this analysis, the latest examples of a combination of the advantages of nucleic acid amplification and those of nanomaterials are examined to suggest the characteristics of the next-generation miRNA biosensing.

Keywords: mirna biosensing; efficient mirna; mirna detection; based mirna

Journal Title: Current Genomics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.