LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lipid-Based Nanoparticles for Targeted Delivery of the Anti-Cancer Drugs: A Review.

Photo from wikipedia

Cancer is one of the main reasons for mortality worldwide. Chemotherapeutic agents have been effectively designed to increase certain patients' survival rates, but ordinarily designed chemotherapeutic agents necessarily deliver toxic… Click to show full abstract

Cancer is one of the main reasons for mortality worldwide. Chemotherapeutic agents have been effectively designed to increase certain patients' survival rates, but ordinarily designed chemotherapeutic agents necessarily deliver toxic chemotherapeutic drugs to healthy tissues, resulting in serious side effects. Cancer cells can often acquire drug resistance after repeated dosing of current chemotherapeutic agents, restricting their efficacy. Given such obstacles, investigators have attempted to distribute chemotherapeutic agents using targeted drug delivery systems (DDSs), especially nanotechnology-based DDSs. Lipid-Based Nanoparticles (LBNPs) are a large and complex class of substances that have been utilized to manage a variety of diseases, mostly cancer. Liposomes seem to be the most frequently employed LBNPs, owing to their high biocompatibility, bioactivity, stability, and flexibility; howbeit Solid Lipid Nanoparticles (SLNs) and Non-structured Lipid Carriers (NLCs) have lately received a lot of interest. Besides that, there are several reports that concentrate on novel therapies via LBNPs to manage various forms of cancer. In the present research, the latest improvements in the application of LBNPs have been shown to deliver different therapeutic agents to cancerous cells and have been demonstrated LBNPs also can be a quite successful candidate in cancer therapy for subsequent use.

Keywords: nanoparticles targeted; based nanoparticles; chemotherapeutic agents; lipid based; delivery; cancer

Journal Title: Current drug delivery
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.