BACKGROUND The development of automatic speech recognition (ASR) technology allows the analysis of temporal (time-based) speech parameters characteristic of mild cognitive impairment (MCI). However, no information has been available on… Click to show full abstract
BACKGROUND The development of automatic speech recognition (ASR) technology allows the analysis of temporal (time-based) speech parameters characteristic of mild cognitive impairment (MCI). However, no information has been available on whether the analysis of spontaneous speech can be used with the same efficiency in different language environments. OBJECTIVE The main goal of this international pilot study is to address the question whether the Speech-Gap Test® (S-GAP Test®), previously tested in the Hungarian language, is appropriate for and applicable to the recognition of MCI in other languages such as English. METHOD After an initial screening of 88 individuals, English-speaking (n = 33) and Hungarian-speaking (n = 33) participants were classified as having MCI or as healthy controls (HC) based on Petersen's criteria. Speech of each participant was recorded via a spontaneous speech task. 15 temporal parameters were determined and calculated by means of ASR. RESULTS Seven temporal parameters in the English-speaking sample and 5 in the Hungarian-speaking sample showed significant differences between the MCI and the HC group. Receiver operating characteristics (ROC) analysis clearly distinguished the English-speaking MCI cases from the HC group based on speech tempo and articulation tempo with 100% sensitivity, and on three more temporal parameters with high sensitivity (85.7%). In the Hungarian-speaking sample, the ROC analysis showed similar sensitivity rates (92.3%). CONCLUSION The results of this study in different native-speaking populations suggest that changes in acoustic parameters detected by the S-GAP Test® might be present across different languages.
               
Click one of the above tabs to view related content.