LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of Non-opioid Analgesics Targeting Two-pore Domain Potassium Channels.

Photo from wikipedia

Two-pore domain potassium (K2P) channels are a diverse family of potassium channels. K2P channels generate background leak potassium currents to regulate cellular excitability and are thereby involved in a wide… Click to show full abstract

Two-pore domain potassium (K2P) channels are a diverse family of potassium channels. K2P channels generate background leak potassium currents to regulate cellular excitability and are thereby involved in a wide range of neurological disorders. K2P channels are modulated by a variety of physicochemical factors such as mechanical stretch, temperature, and pH. In the the peripheral nervous system (PNS), K2P channels are widely expressed in nociceptive neurons and play a critical roles in pain perception. In this review, we summarize the recent advances in the pharmacological properties of K2P channels, with a focus on the exogenous small-molecule activators targeting K2P channels. We emphasize the subtype-selectivity, cellular and in vivo pharmacological properties of all the reported small-molecule activators. The key underlying analgesic mechanisms mediated by K2P are also summarized based on the data in the literature from studies using small-molecule activators and genetic knock-out animals. We discuss advantages and limitations of the translational perspectives of K2P in pain medicine and provide outstanding questions for future studies in the end.

Keywords: potassium; domain potassium; k2p channels; potassium channels; pore domain; two pore

Journal Title: Current neuropharmacology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.