BACKGROUND Human immunodeficiency virus-1 (HIV-1) mutates rapidly to escape host immune pressure. This results in the generation of positively selected mutations (PSM) throughout the viral genome. Escape mutations in Nef,… Click to show full abstract
BACKGROUND Human immunodeficiency virus-1 (HIV-1) mutates rapidly to escape host immune pressure. This results in the generation of positively selected mutations (PSM) throughout the viral genome. Escape mutations in Nef, one of the accessory proteins of HIV-1, which plays an important role in viral pathogenicity have previously been identified in several large cohort studies, but the evolution of PSMs overtime in various HIV-1 subtypes remains unknown. METHODS 161 clade A1, 3093 clade B, 647 clade C and 115 clade D HIV-1 nef sequences were obtained from the HIV Database of Los Alamos National Laboratory and aligned using MEGA 6.0. The sequences from each clade were grouped based on the year of collection. Quasi analysis was used to identify PSMs and the number and locations of PSMs were compared among different subtypes. RESULTS PSMs for all four subtypes were distributed across the sequence of Nef, and conserved residues F90, W113, PxxPxR (a.a 72-77) remain unaltered overtime. The frequency of PSMs was stable among subtype B sequences but increased overtime for other subtypes. Phylogenetic analysis shows that sequences containing PSMs tend to cluster together at both inter and intra- subtype levels. CONCLUSION Identification of PSMs and their changes overtime within various subtypes of HIV-1 is important in defining global viral evolutionary patterns that can provide insights for designing therapeutic strategies.
               
Click one of the above tabs to view related content.