LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

New Resensitizers for the Nicotinic Acetylcholine Receptor by Ligand-Based Pharmacophore Modeling.

INTRODUCTION Irreversible inhibition of the acetylcholinesterase upon intoxication with organophosphorus compounds leads to an accumulation of acetylcholine in the synaptic cleft and a subsequent desensitization of nicotinic acetylcholine receptors which… Click to show full abstract

INTRODUCTION Irreversible inhibition of the acetylcholinesterase upon intoxication with organophosphorus compounds leads to an accumulation of acetylcholine in the synaptic cleft and a subsequent desensitization of nicotinic acetylcholine receptors which may ultimately result in respiratory failure. A direct intervention at the nicotinic acetylcholine receptor (nAChR) was proposed as an alternative therapeutic approach to the treatment with atropine and oximes. METHODS The bispyridinium compound MB327 has been found to recover functional activity of nAChR thus representing a promising starting point for the development of new drugs for the treatment of organophosphate poisoning. Recent solid-supported membrane-based electrophysiological experiments have identified symmetrically substituted bispyridinium compounds e.g. MB327, MB583, and PTM0001 that are able to resensitize nAChR of Torpedo californica. In addition, six compounds have been found not to show any resensitizing potential and were thus classified as inactive. This set of active and inactive bispyridinium compounds was taken to develop a pharmacophore model and in silico screening of a virtual database of bispyridinium compounds to identify new compounds that are able to restore the functional activity of desensitized nAChR. RESULTS Screening of a virtual compound database of symmetrically substituted bispyridinium compounds with the derived pharmacophore yielded several promising compounds which satisfy the pharmacophore and ought to have the same or even better resensitizing effect on nAChR as the parent compound MB327.

Keywords: bispyridinium compounds; acetylcholine receptor; nicotinic acetylcholine; acetylcholine

Journal Title: Current computer-aided drug design
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.