LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Computational search for potential COVID-19 drugs from ayurvedic medicinal plants to identify potential inhibitors against SARS-CoV-2 targets.

Photo by taychinolan from unsplash

BACKGROUND To date, very few small drug molecules are used for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has been discovered since the epidemic commenced in November 2019. SARS-CoV-2… Click to show full abstract

BACKGROUND To date, very few small drug molecules are used for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has been discovered since the epidemic commenced in November 2019. SARS-CoV-2 RdRp and spike protein are essential targets for drug development amidst whole variants of coronaviruses. OBJECTIVE This study aims to discover and recognize the most effective and promising small molecules against SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) and spike protein targets through molecular docking screening of 39 phytochemicals from five different Ayurveda medicinal plants. METHODS The phytochemicals were downloaded from PubChem, and SARS-CoV-2 RdRp and spike protein were taken from the protein data bank. The molecular interactions, binding energy, and ADMET properties were analyzed. RESULTS Molecular docking analysis identified some phytochemicals, oleanolic acid, friedelin, serratagenic acid, uncinatone, clemaphnol A, sennosides B, trilobine and isotrilobine from ayurvedic medicinal plants possessing greater affinity against SARS-CoV-2-RdRp and spike protein targets. Two molecules, namely oleanolic acid and sennosides B, with low binding energies, were the most promising. Furthermore, based on the docking score, we carried out MD simulations for the oleanolic acid and sennosides B-protein complexes. CONCLUSION Molecular ADMET profile estimation showed that the docked phytochemicals were safe. The present study suggested that active phytochemicals from medicinal plants could inhibit RdRp and spike protein of SARS-CoV-2.

Keywords: ayurvedic medicinal; rdrp spike; spike protein; medicinal plants; sars cov

Journal Title: Current computer-aided drug design
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.