LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Assessment of Anticholinergic and Antidiabetic Properties of Some Natural and Synthetic Molecules: an In Vitro and In Silico Approach.

Photo from wikipedia

INTRODUCTION In this study, it was aimed to determine the in vitro and in silico effects of some natural and synthetic molecules on acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and α-glucosidase enzymes.… Click to show full abstract

INTRODUCTION In this study, it was aimed to determine the in vitro and in silico effects of some natural and synthetic molecules on acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and α-glucosidase enzymes. BACKGROUND Alzheimer's disease (AD) and Type II diabetes mellitus (T2DM), which are considered amongst the most important diseases of today's world. However, the side effects of therapeutic agents used in both diseases limit their use. Therefore, it is important to develop drugs with high therapeutic efficacy and better pharmacological profile. OBJECTIVE This study sets out to determine the related enzyme inhibitors used in the treatment of AD and T2DM, which are considered amongst the most important diseases of today's world. METHODS In the current study, the in vitro and in silico effects of dienestrol, hesperetin, L-thyroxine, 3,3',5-Triiodo-L-thyronine (T3) and dobutamine molecules on AChE, BChE and α-glycosidase enzyme activities were investigated. RESULTS All the molecules showed an inhibitory effect on the enzymes. The IC50 and Ki values of the L-Thyroxine molecule, which showed the strongest inhibition effect for the AChE enzyme, were determined as 1.71 µM and 0.83±0.195 µM, respectively. In addition, dienestrol, T3 and dobutamine molecules showed a more substantial inhibition effect than tacrine. Dobutamine molecule showed the most substantial inhibition effect for BChE enzyme, and IC50 and Ki values were determined as 1.83 µM and 0.845±0.143 µM, respectively. The IC50 and Ki values for the hesperetin molecule, which showed the strongest inhibition for the α-glycosidase enzyme, were determined as 13.57 µM and 12.33±2.57 µM, respectively. CONCLUSION According to the results obtained, it may be said that the molecules used in the study are potential inhibitor candidates for AChE, BChE and α-glycosidase.

Keywords: effect; bche; synthetic molecules; enzyme; vitro silico; natural synthetic

Journal Title: Current computer-aided drug design
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.