LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Removal of Targeted Pharmaceuticals and Personal Care Products from Wastewater Treatment Plants using QSAR Model

Photo by thinkmagically from unsplash

Because of their intrinsic ability to induce physiological effects in humans at low doses, pharmaceuticals and personal care products (PPCPs) are a unique group of emerging environmental pollutants. A number… Click to show full abstract

Because of their intrinsic ability to induce physiological effects in humans at low doses, pharmaceuticals and personal care products (PPCPs) are a unique group of emerging environmental pollutants. A number of studies have confirmed the occurrence of different PPCPs in the environment, which raises concerns about possible adverse effects on humans and wildlife. The removal of PPCPs from wastewaters has become a major activity to reduce pollution due to their adverse effects on humans and aquatic ecosystems. This study aimed to design a Quantitative Structure Activity Relationship (QSAR) model for the removal of 57 PPCPs from wastewater treatment plants (WWTPs) of historical data obtained from plants located in South Korea. The target compounds of PPCPs were optimised geometrically using a Forcite-Geometry code, assembled in Material Studio 2016. The removal efficiency of PPCPs is dependent on several preliminary molecular descriptors including rotatable bonds (RBs), hydrogen bond donor (HBD), total molecular mass (TMM), binding energy (BE), atom count (AC), element count (EC), total energy (TE), total dipole (TD), highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). A Genetic Function Approximation (GFA) method was adopted to perform regression analysis and create correlation between experimental data (literature) and measured data (QSAR model). A QSAR model equation was established and used to predict removal efficiency of 57 PPCPs; the results obtained showed goodness of fit, R2 greater than 0.90 indicating that the internal and external validations were also performed on the model.

Keywords: personal care; removal; qsar model; model; care products; pharmaceuticals personal

Journal Title: Current Analytical Chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.