BACKGROUND Cancer is one of the major causes of worldwide human mortality. A number of existing antineoplastic medications and treatment regimens are already working in the field and several new… Click to show full abstract
BACKGROUND Cancer is one of the major causes of worldwide human mortality. A number of existing antineoplastic medications and treatment regimens are already working in the field and several new compounds are in different phases of clinical trials. An extensive series of anticancer drugs exists in the market, and studies suggest that these molecules are associated with different types of adverse side effects. Reduction of the cytotoxicity of drugs to the normal cells is a major problem in anticancer therapy. Therefore, researchers around the globe are involved in the development of more efficient and safer anticancer drugs. The output of extensive research is that the quinazoline scaffold and its various derivatives can be explored further as a novel class of cancer chemotherapeutic agents that has already shown promising activities against different tumours. Quinazoline derivatives have already occupied a crucial place in modern medicinal chemistry.Various research has been performed on quinazoline and their derivatives for anticancer activity and pharmacological importance of this scaffold has been well established. OBJECTIVE The aim of this review is to compile and highlight the developments concerning the anticancer activity of quinazoline derivatives as well as to suggest some new aspects on the expansion of anticancer activity of novel quinazoline derivatives as anticancer agents in the near future. METHODS Recent literature related to quinazoline derivatives endowed with encouraging anticancer potential is reviewed. With special focus on quinazoline moiety, this review offers a detailed account of multiple mechanisms of action of various quinazoline derivatives: inhibition of the DNA repair enzyme system, inhibition of EGFR, thymidylate enzyme inhibition and inhibitory effects for tubulin polymerization by which these derivatives have shown promising anticancer potential. RESULTS Exhaustive literature survey indicated that quinazoline derivatives are associated with properties of inhibiting EGFR and thymidylate enzyme. It was also found to be involved in disturbing tubulin assembly. Furthermore, quinazoline derivatives have been found to inhibit critical targets such as DNA repair enzyme. These derivatives have shown significant activity against cancer. CONCLUSION In cancer therapy, Quinazoline derivatives seems to be quite promising and act through various mechanisms that are well established. This review has shown that quinazoline derivatives can further be explored for the betterment of chemotherapy. A lot of potential is still hidden which demands to be discovered for upgrading quinazoline derivatives efficacy.
               
Click one of the above tabs to view related content.