Cancer is considered one of the gruelling challenges and poses a grave health hazard across the globe. According to the International Agency for Research on Cancer (IARC), new cancer diagnoses… Click to show full abstract
Cancer is considered one of the gruelling challenges and poses a grave health hazard across the globe. According to the International Agency for Research on Cancer (IARC), new cancer diagnoses increased to 18.1 million in 2018, with 9.6 million deaths, bringing the global cancer rate to 23.6 million by 2030. In 1942, the discovery of nitrogen mustard as an alkylating agent was a tremendous breakthrough in cancer chemotherapy. It acts by binding to the DNA, and creating cross linkages between the two strands, leading to arrest of DNA replication and eventual cell death. Nitrogen lone pairs of 'nitrogen mustard' produce an intermediate 'aziridinium ion' at molecular level, which is very reactive towards DNA of tumour cells, resulting in multiple side effects with therapeutic consequences. Owing to its high reactivity and peripheral cytotoxicity, several improvements have been made with structural modifications for the past 75 years to enhance its efficacy and improve the direct transport of drugs to the tumour cells. Alkylating agents were among the first non-hormonal substances proven to be active against malignant cells and also, the most valuable cytotoxic therapies available for the treatment of leukaemia and lymphoma patients. This review focus on the versatile use of alkylating agents and the structure activity relationship (SAR) of each class of these compounds. This could provide an understanding for design and synthesis of new alkylating agents having enhanced target specificity and adequate bioavailability.
               
Click one of the above tabs to view related content.