LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Accumulation of Macromolecules in Idiopathic Normal Pressure Hydrocephalus

Photo from wikipedia

The clearance system in the brain is not completely understood. The aim of this study was to prove the presence of the “glymphatic system” in the human brain using magnetic… Click to show full abstract

The clearance system in the brain is not completely understood. The aim of this study was to prove the presence of the “glymphatic system” in the human brain using magnetic resonance spectroscopy (MRS). Spectral data of the brain white matter were obtained from healthy volunteers and patients with hydrocephalic dementia and used to measure intracerebral metabolites, including macromolecules (MMs) and lipids. Data were transferred from the MRS scanners to a workstation, and metabolites were quantified with the spectrogram-based eddy current method and water scaling. MM levels were significantly higher in patients with a slow gait and executive dysfunction due to normal pressure hydrocephalus (NPH) than in asymptomatic volunteers (p <0.01). In contrast, the N-acetyl aspartate (NAA) level was significantly lower in patients with executive dysfunction than in asymptomatic volunteers (p <0.01). There were no statistically significant differences in metabolites, including alanine, aspartate, creatine, γ-amino butyric acid, D-glucose, glutamine, glutamate, glycerophosphorylcholine, phosphorylcholine, lactate, myoinositol, N-acetyl-aspartyl-glutamate, scyllo-inositol, taurine, creatine methylene, and guanine, in the centrum semiovale between patients with NPH and asymptomatic volunteers. We quantitatively evaluated cerebral metabolites, particularly in the centrum semiovale, with MRS. In the brain of patients with a slow gait and executive dysfunction due to NPH, MRS revealed significantly higher MM levels and lower NAA levels compared to healthy volunteers. Therefore, it may be concluded that the patients have a dysfunctional glymphatic system in the brain.

Keywords: asymptomatic volunteers; normal pressure; executive dysfunction; pressure hydrocephalus; brain

Journal Title: Neurologia medico-chirurgica
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.