LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparison of the fatigue life of pure titanium and titanium alloy clasps manufactured by laser powder bed fusion and its prediction before manufacturing.

Photo by ldxcreative from unsplash

PURPOSE In this study, the fatigue properties of additively manufactured titanium clasps were compared with those of commercially pure titanium (CPTi) and Ti-6Al-4V (Ti64), manufactured using laser powder-bed fusion. METHODS… Click to show full abstract

PURPOSE In this study, the fatigue properties of additively manufactured titanium clasps were compared with those of commercially pure titanium (CPTi) and Ti-6Al-4V (Ti64), manufactured using laser powder-bed fusion. METHODS Fourteen specimens of each material were tested under the cyclic condition at 1 Hz with applied maximum strokes ranging from 0.2 to 0.5 mm, using a small stroke fatigue testing machine. A numerical approach using finite element analysis (FEA) was also developed to predict the fatigue life of the clasps. RESULTS The results showed that although no significant differences were observed between the two materials when a stroke larger than 0.35 mm was applied, CPTi had a better fatigue life under a stroke smaller than 0.33 mm. The distributions of the maximum principal stress in the FEA and the fractured position in the experiment were in good agreement. CONCLUSIONS Using a design of the clasp of the present study, the advantage of the CPTi clasp in its fatigue life under a stroke smaller than 0.33 mm was revealed experimentally. Furthermore, the numerical approach using FEA employing calibrated parameters for the Smith-Watson-Topper method are presented. Under the limitations of the aforementioned clasp design, the establishment of a numerical method enabled us to predict the fatigue life and ensure the quality of the design phase before manufacturing.

Keywords: laser powder; fatigue life; clasps; titanium; pure titanium

Journal Title: Journal of prosthodontic research
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.