LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prediction of Liver Fibrosis Using CT Under Respiratory Control: New Attempt Using Deformation Vectors Obtained by Non-rigid Registration Technique

Photo by miteneva from unsplash

Aim: To investigate whether liver fibrosis can be predicted by quantifying the deformity of the liver obtained based on computed tomographic (CT) images scanned under respiratory control. Materials and Methods:… Click to show full abstract

Aim: To investigate whether liver fibrosis can be predicted by quantifying the deformity of the liver obtained based on computed tomographic (CT) images scanned under respiratory control. Materials and Methods: For dynamic CT of 47 patients, portal venous and equilibrium phases were scanned during inspiration and expiration, respectively. After rigid registration of the two images, non-rigid registration of the liver was performed, and the amount and direction of each voxel's shift during non-rigid registration was defined as the deformation vector. The correlation of each CT parameter for the obtained deformation vectors with the pathologically-proven degree of liver fibrosis was assessed using Spearman's rank correlation test. Receiver operating characteristic curve analysis was conducted for prediction of liver fibrosis. Results: The standard deviation, coefficient of variance (CV) and skewness were significantly negatively correlated with the degree of liver fibrosis (p=0.030, 0.009 and 0.037, respectively). Of these measures, CV was best correlated and significantly decreased as liver fibrosis progressed (rho=−0.376). CV showed accuracies of 66.0-70.2%, and the areas under curves were 0.654-0.727 for prediction of fibrosis of grade F1 or greater, F2 or greater, F3 or greater and F4 fibrosis. Conclusion: The deformation vector is a potential CT parameter for evaluating liver fibrosis.

Keywords: fibrosis; liver fibrosis; deformation; rigid registration; non rigid

Journal Title: AntiCancer Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.