LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interval Vibration Reduces Orthodontic Pain Via a Mechanism Involving Down-regulation of TRPV1 and CGRP

Photo by quangtri from unsplash

Background/Aim: The transient receptor potential vanilloid 1 (TRPV1) ion receptor is involved in the release of calcitonin gene-related peptide (CGRP), a major contributor to orthodontic pain. Approaches that attenuate expression… Click to show full abstract

Background/Aim: The transient receptor potential vanilloid 1 (TRPV1) ion receptor is involved in the release of calcitonin gene-related peptide (CGRP), a major contributor to orthodontic pain. Approaches that attenuate expression of TRPV1 and CGRP may reduce orthodontic pain. We explored the ability of high-frequency interval vibration to reduce orthodontic pain. Materials and Methods: Orthodontic force (50 g) was applied to both maxillary first molars in 8-week-old Wistar rats (n=72). Vibration was applied at 125 Hz for 15 min/day. Duration of face grooming was assessed as a measure of orthodontic pain. Immunofluorescence and western blotting were used to assess TRPV1 and CGRP in the trigeminal ganglia. Results: Compared to orthodontic force alone, application of vibration significantly decreased the duration of face grooming at 24 h and day 3 and reduced expression of TRPV1 and CGRP at 24 h. Conclusion: Vibration represents a promising mechanical approach to reduce orthodontic pain.

Keywords: orthodontic pain; vibration; pain; trpv1 cgrp

Journal Title: In Vivo
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.