Background/Aim: Irradiation of tissue with carbon dioxide (CO2) laser shows a characteristic thermal effect that causes vaporization of tissue in the target region. However, the thermal effect in places other… Click to show full abstract
Background/Aim: Irradiation of tissue with carbon dioxide (CO2) laser shows a characteristic thermal effect that causes vaporization of tissue in the target region. However, the thermal effect in places other than the target region induces tissue damage. Two methods are used: high reactive-level laser therapy (HLLT), aimed at surgical treatment, and low reactive-level laser therapy (LLLT), aimed at cell and tissue activation. In both, vaporization of tissue is induced by thermal damage. A water spray function may ameliorate thermal damage from CO2 laser irradiation. In this study, we irradiated CO2 laser on rat tibiae with or without a water spray function and examined the effects of this technique on bone metabolism. Materials and Methods: Bone defects were created in rat tibiae by dental bur in a Bur group and by laser in laser irradiation groups with (Spray group) and without (Air group) water spray function. At 1 week postoperatively, histological analyses of tibiae were performed using hematoxylin and eosin staining, immunohistochemical staining (IHC) with anti-sclerostin antibody, and 3-dimensional (3D) observation using micro-computed tomography. Results: Histological findings and 3D observation confirmed induction of new bone formation following laser irradiation in both the Air and Spray groups. No bone formation was seen in the Bur group. IHC revealed that the activity of osteocytes in the region of irradiated cortical bone was markedly impaired in the Air group, but osteocyte impairment was ameliorated in the Spray group and absent in the Bur group. Conclusion: The water spray function appears effective in reducing thermal damage to tissues irradiated by CO2 laser. CO2 lasers with water spray function may be useful in bone regeneration therapy.
               
Click one of the above tabs to view related content.