LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Determination of 2DEG parameters in LED heterostructures with three quantum wells In-=SUB=-x-=/SUB=-Ga-=SUB=-1-x-=/SUB=-N/GaN by terahertz time-domain spectroscopy (THz-TDs)

Photo from wikipedia

Terahertz time-domain spectroscopy (THz-TDs) has been used to record the resonant frequencies of plasmon oscillations excited in samples of heterostructures with three InxGa1-xN/GaN quantum wells (QWs) by laser pulses with… Click to show full abstract

Terahertz time-domain spectroscopy (THz-TDs) has been used to record the resonant frequencies of plasmon oscillations excited in samples of heterostructures with three InxGa1-xN/GaN quantum wells (QWs) by laser pulses with a duration of 130 fs in the temperature range from 90 to 170 K. Fast Fourier transform (FFT) of the time dependence of the electric field of THz-pulses made it possible to obtain the frequency spectra of the power and phase shift of THz-radiation, the interpretation of which made it possible to estimate the pulse relaxation time, mobility and effective mass of two-dimensional electron gas (2DEG) in the heterostructures. Using a series of frequency spectra of the power and phase shift of THz-radiation, the temperature dependences of the effective mass and relaxation time of the 2DEG pulse were obtained. Mobility value 2DEG obtained by the THz-TDs is in good agreement with the data of Hall measurements. Keywords: heterostructures, pulse relaxation time, 2DEG, terahertz radiation, terahertz spectroscopy.

Keywords: sub sub; spectroscopy; time; thz tds

Journal Title: Physics of the Solid State
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.