LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the Formation of the Trajectory of Propagation of Laser Radiation in the Anderson Differential Cell

Photo from wikipedia

The necessity of studying the nature of the propagation of the maximum of the laser radiation pattern in the Anderson differential cell is substantiated. A new technique has been developed… Click to show full abstract

The necessity of studying the nature of the propagation of the maximum of the laser radiation pattern in the Anderson differential cell is substantiated. A new technique has been developed for conducting these studies, which takes into account all factors when constructing the trajectory of the maximum laser radiation in the cuvette, as well as outside it (up to the sensor of the photodiode line, on which the radiation is recorded). For the first time, an equation was derived to study the change in the nature of the propagation trajectory of the maximum of laser radiation in the Anderson cell, and beyond it, depending on its various parameters, the values of the refractive indices of the reference ns and the liquid medium under study, nm. The results of checking the reliability of the developed equation are presented. For the first time, a 12th degree polynomial was obtained for Anderson's differential cell with respect to the refractive index of the medium under study to obtain an analytical solution of the developed equation. This solution will provide additional information about the physics of the processes under consideration and the relationships between different quantities. Keywords: laser radiation, refraction, liquid, refractive index, Anderson cell, spread trajectory, equation, polynomial.

Keywords: anderson differential; differential cell; laser radiation; radiation

Journal Title: Technical Physics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.