LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Photodegradation process for the removal of acid orange 10 using titanium dioxide and bismuth vanadate from aqueous solution.

Photo from wikipedia

In this study, the photocatalytic degradation of azo-dye acid orange 10 was investigated using titanium dioxide catalyst suspension, irradiation with ultraviolet-C lamp and bismuth vanadate under visible light of light-emitting… Click to show full abstract

In this study, the photocatalytic degradation of azo-dye acid orange 10 was investigated using titanium dioxide catalyst suspension, irradiation with ultraviolet-C lamp and bismuth vanadate under visible light of light-emitting diode lamp. Response surface methodology was successfully employed to optimize the treatment of acid orange 10 dye and assess the interactive terms of four factors. The characteristics of catalysts were determined by field emission scanning electron microscopes, X-ray diffraction and Fourier transform infrared spectroscopy. The optimum values of initial dye concentration, initial pH, irradiation time and catalyst dose were found 11.889 mg/L, 4.592, 12.87 min, and 0.178 g/100 mL for ultraviolet/titanium dioxide process, respectively, and 10.919 mg/L, 3.231, 320.26 min and 0.239 g/100 mL for visible/bismuth vanadate process, respectively. The removal efficiencies obtained for acid orange 10 were 100% and 36.93% after selecting the optimized operational parameters achieved for titanium dioxide and bismuth vanadate, respectively. The highest efficiency was achieved by the use of ultraviolet/titanium dioxide system, while a low acid orange 10 removal efficiency was obtained for the synthesized bismuth vanadate using the co-precipitation method. Thus, it seems necessary to increase the photocatalytic activity of bismuth vanadate in combination with titanium dioxide to remove acid orange 10 dye in subsequent studies.

Keywords: bismuth vanadate; titanium dioxide; acid orange

Journal Title: Global Journal of Environmental Science and Management
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.