In this study, yttrium aluminum garnet (YAG) was prepared using a facile electrochemical technique. Four samples were synthesized in 0, 20, 40 and 60°C by electrochemical pulse deposition and were… Click to show full abstract
In this study, yttrium aluminum garnet (YAG) was prepared using a facile electrochemical technique. Four samples were synthesized in 0, 20, 40 and 60°C by electrochemical pulse deposition and were then calcined at 1200°C. The effect of synthesis temperature on morphology and structure of YAG was studied using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy (SEM) techniques. Furthermore, the electrochemical performance of samples was investigated by cyclic voltammetry and square-wave voltammetry methods. Structural analysis shows that by increasing the synthesis temperature, the network structure of the samples changes from amorphous to the crystalline structure. SEM results also affirm the structural change and show particle size increase in YAG samples from about 90 nm to 2 µm, as a result of rising electrodeposition temperature. The influence of the observed network structure alteration on the catalytic performance of samples was also found to be very significant. Square-wave voltammetry electrochemical analysis of YAG samples leads to enhanced electro-oxidation features, as a result of temperature increase at the synthesis stage. As a proof of concept, the as-prepared YAG samples were successfully employed for electrochemical sensing of ascorbic acid, which showed a significant rise in the electric current of the sensor.
               
Click one of the above tabs to view related content.