LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Surface Modification of BiVO4 Using (3-Aminopropyl) Triethoxysilane and Study of the Photocatalytic Properties and Process Optimization

Photo by shapelined from unsplash

This research examined the photocatalytic degradation of oily pollutant, BiVO4 with efficient photocatalytic activities synthesized via hydrothermal method with its surface modified by (3- aminopropyl) triethoxysilane (APTES). The structural, morphological,… Click to show full abstract

This research examined the photocatalytic degradation of oily pollutant, BiVO4 with efficient photocatalytic activities synthesized via hydrothermal method with its surface modified by (3- aminopropyl) triethoxysilane (APTES). The structural, morphological, and optical properties of the as synthesized samples were evaluated by X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS), contact angle (CA), Thermo Gravimetric Analysis )TGA(, Fourier-transform infrared spectroscopy (FT-IR), UV-vis diffuse reflectance spectroscopy (DRS), and Analysis Brunauer–Emmett–Teller (BET). The photocatalytic efficiency of the prepared samples was evaluated by Kerosine degradation. The experiments were designed by the Box-Behnken method. Finally, the software is the best point for achieving the highest percentage of degradation of oily pollutant under optimal conditions with pollutant concentration of 436.32 (ppm), time of 2.62 (h), catalyst mass of 0.77 (g), and H2O2 concentration of 0.42 (M).

Keywords: spectroscopy; surface modification; modification bivo4; aminopropyl triethoxysilane

Journal Title: Physical Chemistry Research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.