LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Protective effect of crocin on hemodynamic parameters, electrocardiogram parameters, and oxidative stress in isolated hearts of rats exposed to PM10

Photo from wikipedia

Objective(s): Exposures to particulate matter (PM) have been related to increased risk for cardiovascular health effects and can promote cardiac ischemia and oxidative stress. Crocin has strong antioxidant properties and… Click to show full abstract

Objective(s): Exposures to particulate matter (PM) have been related to increased risk for cardiovascular health effects and can promote cardiac ischemia and oxidative stress. Crocin has strong antioxidant properties and stress-reducing effects. Therefore, this study considered the effect of crocin on cardiovascular parameters in rats exposed to PM10. Materials and Methods: Forty Wistar rats (male, 250–300 g) were grouped as control, receiving normal saline and crocin, receiving PM10, receiving PM10+Crocin. Instillation of PM10 into the trachea was done. Forty-eight hours after exposure to the normal saline or PM, the heart was separated. Hemodynamic and electrophysiological factors were measured. The levels of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase activity (CAT), malondialdehyde (MDA), xanthine oxidase, were evaluated by kits. Results: The voltage of the QRS complex was significantly reduced and PR and QTc intervals increased in PM10 groups. Hemodynamic parameters before ischemia and in the ischemic-reperfusion stage, in the PM10 group, showed a significant decrease. In the ischemic hearts of the PM10 group, a significant decline in the activity of CAT, SOD, and GPx, and a significant increase in MDA and XOX enzymes activity were observed, and crocin improved all of these factors. Conclusion: Cardiac ischemia causes abnormal hemodynamic factors of the heart, which are exacerbated by PM10 and further reduce the heart’s contractile strength. Increased oxidative stress due to PM10 is probably one of the important reasons for these changes. This study suggests that the use of antioxidants such as crocin improves the cardiovascular adverse effects of myocardial ischemia and PM10 exposure.

Keywords: effect crocin; rats exposed; oxidative stress; crocin; pm10

Journal Title: Iranian Journal of Basic Medical Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.