LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Morphological, structural and photoresponse characterization of ZnO nanostructure films deposited on plasma etched silicon substrates

Photo from wikipedia

ZnO nanostructure films were deposited by radio frequency (RF) magnetron sputtering on etched silicon (100) substrates using dry Ar/SF6 plasma, at two etching times of 5 min and 30 min,… Click to show full abstract

ZnO nanostructure films were deposited by radio frequency (RF) magnetron sputtering on etched silicon (100) substrates using dry Ar/SF6 plasma, at two etching times of 5 min and 30 min, and on non etched silicon surface. Energy dispersive X-ray (EDX) technique was employed to investigate the elements contents for etched substrates as well as ZnO films, where it is found to be stoichiometric. Surface and growth evolution of films were explored by scanning electron microscope (SEM) images and found to have morphological development from spherical forms into nanowires with increasing substrate etching time. 2D atomic force microscope (AFM) images clarify this modification of the morphology and roughness values are deduced. Structural study was investigated using X-ray diffraction (XRD) patterns. The films had (002) preferential orientation with various etching time substrates. Optical characterization illustrated a decrease of reflectance with the morphological modification. Photoresponse measurement has been investigated and correlated with the crystallinity.

Keywords: films deposited; etched silicon; nanostructure films; zno nanostructure

Journal Title: Journal of Nanostructures
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.