LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermodynamic analysis of a novel solar water heating system during low sun radiation in Iran

Photo from wikipedia

This paper reports a plenary thermodynamic model of a novel solar system for water heating in buildings. Energy and exergy analyses are used to characterize the exergy destruction rate in… Click to show full abstract

This paper reports a plenary thermodynamic model of a novel solar system for water heating in buildings. Energy and exergy analyses are used to characterize the exergy destruction rate in any component and calculate system overall efficiency. The system consists of a solar evaporator, a heat exchanger to produce hot water, and an auxiliary pump. A computer simulation program using EES software is developed to model the solar water heating system. The system provides hot water during the hours of low sun radiation. Thermodynamic analysis involves the designation of effects of heat exchanger pinch point and ambient temperatures on the energetic and exergetic performance of the solar water heating system. The performance parameters computed are exergy destruction, and energetic and exergetic efficiencies. The result showed that the main source of exergy destruction is the solar evaporator. In the solar evaporator, 92.85% of the input exergy was destroyed. The other main source of exergy destruction is the heat exchanger, at 4.15%. The overall energetic and exergetic efficiencies of the solar water heating system were approximately 60.17% and 3.002% respectively.

Keywords: novel solar; heating system; system; water; water heating; solar water

Journal Title: Environmental Engineering Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.