In the present study, a hybrid Eulerian-Lagrangian methodology is utilized for large eddy simulation (LES) of premixed fuel/air flow over a three-dimensional backward facing step (BFS). The fluid dynamic features… Click to show full abstract
In the present study, a hybrid Eulerian-Lagrangian methodology is utilized for large eddy simulation (LES) of premixed fuel/air flow over a three-dimensional backward facing step (BFS). The fluid dynamic features are obtained by solving the Eulerian filtered compressible transport equations while the species are predicted by using the filtered mass density function method (FMDF). Some scalar fields are duplicated in FD and MC solvers to examine the numerical consistency between them. A good agreement is achieved by comparing the essential characteristics of the BFS flow (such as the mean and RMS values of the velocity and temperature fields and also the reattachment length) obtained from numerical results with the measurements. This ensures that the proposed hybrid method is reliable for studying the reacting flow in relatively complex combustion systems. Additionally, the performance of several SGS models are assessed, and the results indicate that the dynamic Smagorinsky and WALE models are superior to standard Smagorinsky and MKEV models.
               
Click one of the above tabs to view related content.