LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MONITORING OXIDATIVE LEVELS OF FRYING OILS USING FTIR SPECTROSCOPY AND MULTIVARIATE CALIBRATION

Photo by taylorheeryphoto from unsplash

Objective: To develop a rapid reliable technique based on Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy in combination with multivariate calibrations for prediction of frying oil quality, namely acid value… Click to show full abstract

Objective: To develop a rapid reliable technique based on Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy in combination with multivariate calibrations for prediction of frying oil quality, namely acid value (AV), iodine value (IV) and peroxide value (PV).Methods: FTIR spectra were directly obtained and subjected to optimization and spectral treatments including a selection of wavenumbers region and spectral derivatization. The condition selected was based on its capability to provide the highest coefficient of determination (R2) and the lowest root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP) for the relationship between actual values of AV, IV, and PV as determined using standard titrimetric methods and predicted values as determined by FTIR spectroscopy aided with multivariate calibrations.Results: Using optimized condition, FTIR spectroscopy combined with multivariate calibrations could be successfully used for prediction of AV, and PV. Acid value (AV) could be determined using the first derivative spectra at wavenumbers of 1524-658 cm-1. The R2of 0.973 (in calibration model) and 0.932 (in prediction model) with low RMSEC and RMSEP values was obtained. Iodine value (IV) was best predicted using principle component regression (PCR) with normal FTIR spectra at the combined wavenumbers region of 3076-2783 and 1811-656 cm-1. PCR using normal spectra at combined wavenumbers region of 3076-2783and 1811-656 cm-1 was also selected for prediction of PV. Conclusion: FTIR spectroscopy in combination with multivariate calibration has been successfully used for prediction of acid value, iodine value and peroxide value in frying oils. The developed method could be an alternative technique for analysis of these values to perform quality assurance of frying oils.

Keywords: ftir spectroscopy; value; frying oils; calibration; spectroscopy; prediction

Journal Title: International Journal of Applied Pharmaceutics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.