LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deconvolution and network analysis of IDH-mutant lower grade glioma predict recurrence and indicate therapeutic targets.

Photo by dawson2406 from unsplash

Aim: IDH-mutant lower grade glioma (LGG) has been proven to have a good prognosis. However, its high recurrence rate has become a major therapeutic difficulty. Materials & methods: We combined… Click to show full abstract

Aim: IDH-mutant lower grade glioma (LGG) has been proven to have a good prognosis. However, its high recurrence rate has become a major therapeutic difficulty. Materials & methods: We combined epigenomic deconvolution and a network analysis on The Cancer Genome Atlas IDH-mutant LGG data. Results: Cell type compositions between recurrent and primary gliomas are significantly different, and the key cell type that determines the prognosis and recurrence risk was identified. A scoring model consisting of four gene expression levels predicts the recurrence risk (area under the receiver operating characteristic curve = 0.84). Transcription factor PPAR-α explains the difference between recurrent and primary gliomas. A cell cycle-related module controls prognosis in recurrent tumors. Conclusion: Comprehensive deconvolution and network analysis predict the recurrence risk and reveal therapeutic targets for recurrent IDH-mutant LGG.

Keywords: deconvolution network; network analysis; idh mutant; recurrence

Journal Title: Epigenomics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.