Background: To determine suitable optimal classifiers and examine the general applicability of computer-aided classification to compare the differences between a computer-aided system and radiologists in predicting pathological complete response (pCR)… Click to show full abstract
Background: To determine suitable optimal classifiers and examine the general applicability of computer-aided classification to compare the differences between a computer-aided system and radiologists in predicting pathological complete response (pCR) from patients with breast cancer receiving neoadjuvant chemotherapy. Methods: We analyzed a total of 455 masses and used the U-Net network and ResNet to execute MRI segmentation and pCR classification. The diagnostic performance of radiologists, the computer-aided system and a combination of radiologists and computer-aided system were compared using receiver operating characteristic curve analysis. Results: The combination of radiologists and computer-aided system had the best performance for predicting pCR with an area under the curve (AUC) value of 0.899, significantly higher than that of radiologists alone (AUC: 0.700) and computer-aided system alone (AUC: 0.835). Conclusion: An automated classification system is feasible to predict the pCR to neoadjuvant chemotherapy in patients with breast cancer and can complement MRI.
               
Click one of the above tabs to view related content.