Intramacrophage parasite 'Leishmania' has developed various mechanisms for proficient uptake into macrophages and phagosome regulation to avoid macrophage's oxidative burst induced by peroxide, hydroxyl radical, hypochlorous acid and peroxynitrite production.… Click to show full abstract
Intramacrophage parasite 'Leishmania' has developed various mechanisms for proficient uptake into macrophages and phagosome regulation to avoid macrophage's oxidative burst induced by peroxide, hydroxyl radical, hypochlorous acid and peroxynitrite production. One major barrier for impairing the accession of old fashioned anti-Leishmanial drugs is intrinsic incapability to pass through cell membranes and limiting their abilities to ultimately destroy intracellular pathogens. Receptor-mediated targeted drug delivery to the macrophages by using nanoparticles emerges as promising strategy to improve therapeutic efficacy of old-fashioned drug. Receptor-mediated targeted nanoparticles can migrate across the cell membrane barriers and release enclosed drug cargo at sites of infection. This review is focusing on Leishmania-macrophage signaling alterations, its association with drug resistance and role of nanoparticles for receptor mediated macrophage targeting.
               
Click one of the above tabs to view related content.